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« »; vary with volume in the same manner.? The thermal
- pressure Py of the lattice is given by

P 1= 'YEI/ V) (5)
where the thermal energy E; of the lattice is defined by
El = (Z 1'%P12>Av+ <Z i27r21’12CIz'2)Av, (6)

in which the averages of the kinetic and potential

| energies which appear must be computed from quantum

statistical mechanics. The volumetric coefficient a of
thermal expansion for a harmonic solid can be found
from Griineisen’s law

Ka=vCv/V, (7)

in which K is the bulk modulus (inverse compressibility)
and Cy is the heat capacity at constant volume. This
result follows directly from Eq. (5), on the Griineisen
assumption that v is a function only of volume.

The thermal oscillators, whose coordinates appear

. in Eq. (3) for H, may be the virtual oscillators of the

acoustic field as in a Debye solid (which shows a
spectrum of frequencies), or they may be material
oscillators, as in the Druyvesteyn-Meyering solid
(where only one frequency appears) discussed below.

‘Such harmonic solids stand in contrast to the an-
" harmonic solids treated by Born and Brody,” or by
. Hooton.?

A. Debye Solid

For purposes of later reference, a prefatory discussion
of a Debye solid will be given.
The Debye frequency »p of an isotropic monatomic

' solid is defined by

3N=(4/3)V (ci+2¢75)vp?, (8)

where IV is Avogadro’s number, V is the atomic volume,
and ¢; and ¢ are the velocities of longitudinal and
transverse elastic waves, respectively; this definition
corresponds to the Debye assumption of an average
wave velocity for the two types of waves. The wave
velocities are given for an isotropic solid by

cr= ()\+2F’)/p) 512=F/p’ (9)

if p is the density and X and u are the Lamé parameters.
The definition of the bulk modulus by
K=-—Var/ov (10)

yields the result
K=\ 3u (11)

on the infinitesimal theory of elasticity. Use of this
relation and the definition,

o= 0w, (12)

® E. Griineisen, in Handbuch der Physik (Verlag Julius Springers

Berlin, 1926), pp. 1-59.

1 M. Born and E. Brody, Z. Physik 6, 132 (1921).
2], J. Hooton, Phil. Mag. 46, 422, 433 (1955).
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of Poisson’s ratio ¢ permits one to write Eq. (8), in
the form of I and II, as

VD:SDNlIﬁM—lﬂKUZI/l/G, (13)

where M is the atomic weight and sp(e) is defined by
3 i 9/4m 3

o] s
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Thermodynamic functions on the Debye model, such
as the thermal energy E; of Eq. (6), are given directly
by standard results® in terms of hvp/kT, where h
and k are the Planck and Boltzmann constants respec-
tively, and 7 is the absolute temperature.

To satisfy Griineisen’s postulate,® that all the
frequencies vary with volume in the same manner, it is
essential that the Poisson ratio ¢ be constant ; otherwise
the frequencies of the longitudinal and transverse
waves show different variations.® With this assumption,
use of Eq. (13) in Eq. (4) yields

19 InK/d InV (15)

for the Griineisen parameter yp on the Debye model.
This form for yp is essentially that of Lorentz; by Eq.
(10), it is equivalent to Eq. (1) of Slater, which, one
notes, does not contain explicitly the Lamé parameters
X and p characteristic of the infinitesimal theory of
elasticity.

It is common in the theory of elasticity of solids to
consider only adiabatic and isothermal processes, in
which cases a strain-energy function can be defined*;
thus, the distinction between the energy and the
Helmholtz free energy will be ignored, in general.
It is known that the bulk modulus for a solid can be
taken indifferently as adiabatic or isothermal at low
pressure,2® and the result for a solid at high pressure
follows from the Thomas-Fermi atomic model, for
temperatures low in the sense of the model.” Hence,
qualification of a partial derivative with respect to
volume as adiabatic or isothermal will be omitted, on
the basis above, and on the basis of Griineisen’s
assumption that the characteristic frequency is a
function only of volume.

B. Druyvesteyn-Meyering Solid

‘In this section, the Griineisen parameter given by
Druyvesteyn and Meyering will be obtained from an
atomistic model. Consider a monatomic solid with a
simple cubic lattice. Assume that each atom shares a
bond with each of its six nearest neighbors, and with
no neighbors more remote. Let each bond be represented

2 J. I.. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley and Sons, Inc., New York, 1940), pp. 243, 251.

uA, L. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, New York, 1944), fourth edition,
pp- 94, 99, 104

35 H, Jefireys, Proc. Cambridge Phil. Soc. 26, 101 (1930).

® J. J. Gilvarry, Phys. Rev. 96, 934 (1954).




